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Abstract 

The convexity of localization forms, strictly required by conventional geometrie-probabilistie 
formalism, is not in agreement with many experimental observations concerning solid-phase 
chemical reactions. In a discussion of the essence of this requirement, it is shown that it may be 
weakened for non-convex localization forms consistent with the symmetry of a solid reagent and 
described within the geometric-probabilistic approach in terms of planigons and Wigner-Seitz cells. 
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Introduction 

There are a fair number of examples of the non-convex localization forms of 
solid-phase chemical reactions, both convex and non-convex forms being ob- 
servable even at the same crystal face, depending on the reaction type [1]. 

At the same time, the conventional geometric-probabilistic approach, widely 
used to describe these reactions in the kinetic regime [2-5], requires the strict 
convexity of the localization forms. Otherwise, the calculated probability ap- 
pears to be an upper estimation rather than the exact solution to the degree of 
conversion offt) [6]. (Not infrequently, another material requirement of the 
same form and orientation of the nuclei is satisfied simply by taking this form 
to be spherical and the convexity requirement remains in the shadow.) 

With the aim of adapting the geometric-probabilistic formalism to a more 
subtle simulation of the chemical regularities by representing the solid reagent 
as a chemical individual in terms of Dirichlet domains [7, 8], we again face the 
convexity requirement, but now in another context: the planigons and Wigner- 
Seitz cells describing the symmetry of a solid reagent must be convex. 

Naturally, the question arises of whether the experimentally observed non- 
convex localization forms may be described in terms of the geometric-prob- 
abilistic aproach. It will be shown that the convexity requirement may be 
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weakened without loss of rigour in the particular case of nuclei formation at the 
lattice points alone. And due to this, the non-convex localization forms, made 
up of convex planigons, win the 'right of citizenship' within the discussed ap- 
proach. (It is worth noting in this respect that the experimentally observed re- 
action front does not always coincide with the implied front of the redistribution 
of chemical bonds [ 1].) 

The problem of convexity is basically the problem of the interrelation be- 
tween a complex probability, calculated in the framework of the geometric- 
probabilistic approach, and the main variable of heterogeneous chemical 
kinetics, the degree of conversion ~(t). The latter is associated with the prob- 
ability P(t) that an arbitrary point A of the original phase will be taken up by the 
new phase of growing and impinging nuclei up to time t. This probability P is 
the exact solution to ct only if definite conditions are satisfied, including the 
convexity requirement [6]. 

From formal mathematical considerations, connected with use of the theo- 
rem of multiplication of mutually independent probabilities, the geometric- 
probabilistic approach is based on calculation of the probability ( l -P)  that the 
above point A will not be taken up by the new phase up to the given instant of 
time. The main steps in the conventional case of a homogeneous and continuous 
original phase are as follows. Let the nucleus with point B as center have the 
form shown in Fig. la. Of course, this non-centrally symmetric form is not 
typical of an isotropic medium, and is chosen for illustration purposes alone. A 
nucleus is characterized by its radius R(~,t), where z is the instant of its appear- 
ance and t is the current time. The radius may be read in any direction from the 
center, but this direction must be one and the same for all nuclei. The particular 
form of a nucleus also determines a certain metric: the distance p(A,B) from the 
nucleus center B to some point A is defined as the radius RB(x,t) that must be 
reached by the nucleus B, appearing at the instant x, to take up the point A up 
to the instant t. The set of points for which the distance from point A does not 
exceed some value r is termed the r-neighborhood of point A. This region is 
centrally symmetric relative to the nucleus with center at A and is characterized 
by the same quantity R(x,t), but read in the opposite direction (Fig. I a). If this 
region is free from nuclei up to the instant x, its central point A will not be taken 
up by the new phase up to the instant t. It is clear that, at fixed t, the r-neigh- 
borhood is maximum for "c=o, tightening towards point A as x---~t. The absence 
of nuclei in the r-neighborhoods of point A at the successive instants of time 
xl=0,  ~2,..., t are just the mutually independent events. The product of prob- 
abilities of these events, calculated with regard to the intensity of nucleus ap- 
pearance and the area (or volume) of r-neighborhoods, gives at the limit Az~0 
the desired probability that the point A will not be taken up by the new phase up 
to the instant t. 

However, it is essential to emphasize that, in the general case, the appear- 
ance of a nucleus in the r-neighborhood ensures the uptake of point A, and the 
absence of nuclei ensures freedom for point A only if the nucleus is convex. 
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Otherwise, discrepancies are possible [6]. The discussed issues must be consid- 
ered in terms of Dirichlet tessellations. In these terms, the process is described 
as the growth of the only nucleus inside the ever-decreasing averaged hexagon 
cell of the random mosaic [7]. In this context, the following nuance is con- 
nected with the convexity requirement: we must be sure that each cell of the 
random mosaic will be the 'rightful domain' for its nucleus at any instant of 
time, with regard to the permanent rearrangement of the random mosaic. Only 
with this condition being satisfied, will the statements of the geometric-prob- 
abilistic scheme in terms of coverings and tessellations [9] be equivalent. In this 
respect, the non-convexity of a nucleus may result in two misestimations. 

(i) The appearance of a new nucleus is accompanied by the appearance of a 
new cell of the random mosaic at the expense of adjacent cells. This rearrange- 
ment must proceed in such a way as to ensure that the 'older' nucleus is located 
completely within its new cell. However, in the case of a non-convex nucleus, 
there is a chance that it will exceed the limits of its cell and occupy part of the 
adjacent cell. The heavy hexagon in Fig. lb is the cell of nucleus A before the 
appearance of nucleus B. The latter event is accompanied by the appearance of 
a new cell (shown in Fig. lb by a thin line), part of it being occupied by nucleus 
A (solid hatching). As a result, the calculated fraction of the new phase will be 
misestimated. 

(ii) In relation to some nucleus (for example,, nucleus A in Fig. lc), its cell 
of random mosaic E singles out the immediate neighbors (nuclei B and C). In 
contrast, nucleus D has no common edge of the random mosaic with nucleus A 
and thus does not belong to the immediate neighbors. This means that in the 
course of a process it must not impinge with nucleus A and must not influence 
the dynamics of impingements of A with B and C: whereas the appearance of a 
new nucleus results in rearrangement of the random mosaic, the growth of nu- 
clei without the appearance of new nuclei must preserve the random mosaic and 
the subdivision into immediate and non-immediate neighbors. Figure lc reveals 
that this may not be the case for non-convex nuclei. Cell E is drawn (with a 

heavy  line) on the assumption that nucleus D is absent and nucleus B grows 
without disturbances. However, it may be seen from the Figure that the non- 
convex nucleus D, a non-immediate neighbor, may prevent the growth of nu- 
cleus B in the direction of nucleus A. As a result, the corresponding edge of the 
random mosaic will be shifted (thin line F), introducing a mistake into the cal- 
culations. 

The possibility of the above misestimations is connected with the non-con- 
vex form of nuclei as far as the homogeneous continuous medium is concerned. 
However, this is not the case if certain peculiarities of the approach suggested 
are taken into account, primarily the discrete character of the appearance and 
growth of nuclei [7, 8]. In accordance with the translation symmetry of a solid 
reagent, a definite number of convex planigons are added to the growing nu- 
cleus at each step. The result is a non-convex centrally symmetric figure. The 
form of the r-neighborhood coincides in this case with the form of the nucleus. 
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When the appearance of the nucleus is discussed in these terms, one deals not 
with continuous neigborhoods, but only with discrete sets of points at which a 
nucleus may appear. In Fig. ld, these sets are shown for two possible topologi- 
cally different cases: quadrangular (A) and hexagonal (B) Wigner-Seitz cells. It 
is worth emphasizing that in both cases these points form the convex sets deter- 
mining the essential peculiarity of the considered non-convex figures. By virtue 
of this, a nucleus consisting of planigons may neither exceed the limits of its cell 
of random mosaic in the course of rearrangement, nor be converted from an im- 
mediate neighbor into a non-immediate one or vice versa. 

We will consider the case of quadrangular Wigner-Seitz cells, similar con- 
siderations holding for hexagonal cells. It is worth emphasizing that the local- 
ization forms and, accordingly, the metrics associated with these forms, are 
determined ultimately by the symmetry of a solid-phase reagent: at each step, 
the process of nucleus growth propagates to all nearest translationally equiva- 
lent positions determined by the Wigner-Seitz cells, the total number of added 
planigons being determined by the number of translationally non-equivalent lat- 
tice points in a Wigner-Seitz cell. Using, as previously [7], the step number s 
for the discrete time, one may naturally associate integer coordinates with each 
Wigner-Seitz cell and characterize the growing figure by the radius 
R= Ixl + ]Yl (rather than (x2+y~) 1/2, the corresponding metric being deter- 
mined by the relationship p(A,B)= I Axl + IAyl = px(a,B)+ py(A,B). 

In this metric, the boundaries of the random cell are straight lines only when 
they are parallel to the coordinate axis, being stepwise lines in the general situ- 
ation. An example is the hexagonal cell of nucleus A, drawn in Fig. le with a 
heavy line (the absence of nucleus B is assumed). The situation shown in this 
Figure is similar to that in Fig. lb: the appearance of a new nucleus B results in 
rearrangement of the random mosaic, and the new boundary (shown with a thin 
line) appears between nuclei A and B. Its stepwise part contains n=min(lAx[,  
lAY I) + 1 steps and for this reason all Wigner-Seitz cells forming the side of nu- 
cleus A turned towards nucleus B (single hatching) are equidistant from the new 
boundary. Accordingly, our nucleus will in no case exceed the limits of its cell 
in the course of rearrangement of the random mosaic. 

Finally, Fig. If shows a situation similar to that in Fig. lc. Nuclei B and C 
are immediate neighbors of nucleus A. Heavy line E is part of the cell of A. Its 
maximum distance from A is d=max(p(A,B),p(B,C))+5, where 5= I p(A,B) 
-p(A, C) I . The stepwise thin line F is part of the boundary between nuclei A and 
D. Nucleus D is not an immediate neighbor of A, i.e. p(A,D)>d. To block the 
way of nucleus B towards A, the situation of nucleus D must satisfy the inequal- 
ity py(B,D)<-Ox(B,D ). Additionally, the impingement of nuclei B and D must 
take place between E and B: px(B,D)<-px(A,B)/2. With regard to the triangle in- 
equality, these conditions are incompatible. This means that a situation similar 
to that in Fig. lc is impossible because of the peculiarity of the metric. 

Hence, it follows that the convexity requirement, strict in the case of a con- 
tinuous original phase, may be considerably weakened when the discrete nu- 
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Fig. 2 An example of the non-convex localization form consistent with the geometric-prob- 
abilistie approach 

cleus formation in the lattice points involves nucleus growth described in terms 
of planigons and Wigner-Seitz cells. One of the numerous examples of non-con- 
vex localization forms, which acquire the 'rights of citizenship' in the frame- 
work of the geometric-probabilistic approach, is shown in Fig. 2 (p4 symmetry 
group). In this context, the at first sight formal convexity requirement appears 
to be connected with material conceptual distinctions between solid-phase 
chemical reactions and conventional phase transitions. 
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